常见的查找算法(上)

现代计算机和网络使我们能够访问海量的信息。查找是在大量的信息中寻找一个特定的信息元素。高效地检索这些信息的能力是处理它们的重要前提。本文简单概括性的介绍了常见的七种查找算法,说是七种,其实二分查找、插值查找以及斐波那契查找都可以归为一类——插值查找。插值查找和斐波那契查找是在二分查找的基础上的优化查找算法。

原文:http://www.cnblogs.com/maybe2030/p/4715035.html,这里在原文基础上加以补充修改。

查找定义:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。

查找算法分类

静态查找和动态查找

静态或者动态都是针对查找表而言的。动态表指查找表中有删除和插入操作的表。

无序查找和有序查找。

  • 无序查找:被查找数列有序无序均可;

  • 有序查找:被查找数列必须为有序数列。

平均查找长度(Average Search Length,ASL)

需和指定key进行比较的关键字的个数的期望值,称为查找算法在查找成功时的平均查找长度。

对于含有n个数据元素的查找表,查找成功的平均查找长度为:ASL = Pi*Ci的和。

Pi:查找表中第i个数据元素的概率。
Ci:找到第i个数据元素时已经比较过的次数。

顺序查找

说明:顺序查找适合于存储结构为顺序存储或链接存储的线性表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

复杂度分析: 

查找成功时的平均查找长度为:(假设每个数据元素的概率相等) ASL = 1/n(1+2+3+…+n) = (n+1)/2 ;
当查找不成功时,需要n+1次比较,时间复杂度为O(n); 所以,顺序查找的时间复杂度为O(n)。

1
2
3
4
5
6
7
8
9
//顺序查找
int SequenceSearch(int a[], int value, int n)
{
int i;
for(i=0; i<n; i++)
if(a[i]==value)
return i;
return -1;
}

二分查找

说明:元素必须是有序的,如果是无序的则要先进行排序操作。

基本思想:也称为是折半查找,属于有序查找算法。用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。

复杂度分析:最坏情况下,关键词比较次数为log2(n+1),且期望时间复杂度为O(log2n)

注:折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。——《大话数据结构》

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//二分查找,非递归
int BinarySearch1(int a[], int value, int n)
{
int low, high, mid;
low = 0;
high = n-1;
while(low<=high)
{
mid = (low+high)/2;
if(a[mid]==value)
return mid;
if(a[mid]>value)
high = mid-1;
if(a[mid]<value)
low = mid+1;
}
return -1;
}
//二分查找,递归
int BinarySearch2(int a[], int value, int low, int high)
{
int mid = low+(high-low)/2;
if(a[mid]==value)
return mid;
if(a[mid]>value)
return BinarySearch2(a, value, low, mid-1);
if(a[mid]<value)
return BinarySearch2(a, value, mid+1, high);
}

插值查找

在介绍插值查找之前,首先考虑一个新问题,为什么上述算法一定要是折半,而不是折四分之一或者折更多呢?

打个比方,在英文字典里面查“apple”,你下意识翻开字典是翻前面的书页还是后面的书页呢?如果再让你查“zoo”,你又怎么查?很显然,这里你绝对不会是从中间开始查起,而是有一定目的的往前或往后翻。

同样的,比如要在取值范围1 ~ 10000 之间 100 个元素从小到大均匀分布的数组中查找5, 我们自然会考虑从数组下标较小的开始查找。

经过以上分析,折半查找这种查找方式,不是自适应的(也就是说是傻瓜式的)。二分查找中查找点计算如下:

1
mid=(low+high)/2, 即mid=low+1/2*(high-low);

通过类比,我们可以将查找的点改进为如下:  

1
mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

也就是将上述的比例参数1/2改进为自适应的,根据关键字在整个有序表中所处的位置,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

复杂度分析:查找成功或者失败的时间复杂度均为O(log2(log2n))。

1
2
3
4
5
6
7
8
9
10
11
//插值查找
int InsertionSearch(int a[], int value, int low, int high)
{
int mid = low+(value-a[low])/(a[high]-a[low])*(high-low);
if(a[mid]==value)
return mid;
if(a[mid]>value)
return InsertionSearch(a, value, low, mid-1);
if(a[mid]<value)
return InsertionSearch(a, value, mid+1, high);
}

斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。



基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:

  • =,mid位置的元素即为所求
  • >,low=mid+1;
  • <,high=mid-1。

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,即n=F(k)-1;

开始将key值与第F(k-1)位置的记录进行比较(即mid=low+F(k-1)-1),比较结果也分为三种

  • =,mid位置的元素即为所求
  • >,low=mid+1,k-=2;

说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

  • <,high=mid-1,k-=1。

说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归的应用斐波那契查找。

复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// 斐波那契查找.cpp
#include "stdafx.h"
#include <memory>
#include <iostream>
using namespace std;
const int max_size=20;//斐波那契数组的长度
/*构造一个斐波那契数组*/
void Fibonacci(int * arr)
{
arr[0]=0;
arr[1]=1;
for(int i=2;i<max_size;++i)
arr[i]=arr[i-1]+arr[i-2];
}
/*定义斐波那契查找法*/
int FibonacciSearch(int *a, int n, int key) //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字
{
int low=0;
int high=n-1;
int F[max_size];
Fibonacci(F);//构造一个斐波那契数组F
int k=0;
while(n>F[k]-1)//计算n位于斐波那契数列的位置
++k;
int * temp;//将数组a扩展到F[k]-1的长度
temp=new int [F[k]-1];
memcpy(temp,a,n*sizeof(int));
for(int i=n;i<F[k]-1;++i)
temp[i]=a[n-1];
while(low<=high)
{
int mid=low+F[k-1]-1;
if(key<temp[mid])
{
high=mid-1;
k-=1;
}
else if(key>temp[mid])
{
low=mid+1;
k-=2;
}
else
{
if(mid<n)
return mid; //若相等则说明mid即为查找到的位置
else
return n-1; //若mid>=n则说明是扩展的数值,返回n-1
}
}
delete [] temp;
return -1;
}
int main()
{
int a[] = {0,16,24,35,47,59,62,73,88,99};
int key=100;
int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key);
cout<<key<<" is located at:"<<index;
return 0;
}

分块查找

分块查找又称索引顺序查找,它是顺序查找的一种改进方法。

算法思想:将n个数据元素”按块有序”划分为m块(m ≤ n),每块含有N/m个元素。每一块中的结点不必有序,但块与块之间必须”按块有序”;即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……

算法流程:

  • step1 ,先选取各块中的最大关键字构成一个索引表;
  • step2 ,查找分两个部分:先对索引表进行二分查找或顺序查找,以确定待查记录在哪一块中;然后,在已确定的块中用顺序法进行查找。

时间复杂度分析,时间复杂度跟分块的大小有关,为O(log(m)+N/m)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/*分块查找*/
//索引表
struct IndexTable
{
int max; //每个块内的最大元素
int index; //块的下标
};
int IndexOrderSearch(IndexTable *indexTable,int *arr, int n, int m, int value)
// indexTable为索引表,arr为原数组,n为数组大小,m为块大小
{
int L = (n+m-1)/m; // L为块数
int i = 0;
while(i < L && indexTable[i].max < value)
i++;
if(i == L)
return -1;
else
{
int j = indexTable[i].index;
for(j; j<indexTable[i].index + m;j++)
if(arr[j] == value)
return j;
}
return -1;
}

参考: